[feature] 服务测试
This commit is contained in:
parent
3e692d9272
commit
6140cba6ba
3
.idea/misc.xml
generated
3
.idea/misc.xml
generated
@ -1,4 +1,7 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<project version="4">
|
||||
<component name="Black">
|
||||
<option name="sdkName" value="Python 3.13" />
|
||||
</component>
|
||||
<component name="ProjectRootManager" version="2" project-jdk-name="Python 3.13" project-jdk-type="Python SDK" />
|
||||
</project>
|
||||
1
.idea/vcs.xml
generated
1
.idea/vcs.xml
generated
@ -2,5 +2,6 @@
|
||||
<project version="4">
|
||||
<component name="VcsDirectoryMappings">
|
||||
<mapping directory="" vcs="Git" />
|
||||
<mapping directory="$PROJECT_DIR$/param_struct_test" vcs="Git" />
|
||||
</component>
|
||||
</project>
|
||||
57
app.py
57
app.py
@ -1,3 +1,5 @@
|
||||
import time
|
||||
|
||||
from component.widget_main.widget_main import Widget_Main
|
||||
from component.widget_channel.widget_channel import Widget_Channel
|
||||
from component.widget_card.widget_card import Widget_Card
|
||||
@ -13,49 +15,49 @@ from PySide6.QtWidgets import QMainWindow, QPushButton, QVBoxLayout
|
||||
from PySide6.QtWidgets import QWidget
|
||||
from PySide6.QtCore import QObject
|
||||
|
||||
|
||||
class MainWindow(QWidget):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
# 初始化服务
|
||||
ServiceManager.instance().init_services("127.0.0.1", 1234)
|
||||
ServiceManager.instance().init_services("192.168.5.4", 12345)
|
||||
# 初始化应用控制器
|
||||
self.app_controller = ApplicationController.instance()
|
||||
|
||||
|
||||
self.widget_main = Widget_Main()
|
||||
self.widget_channel = Widget_Channel()
|
||||
self.widget_card = Widget_Card()
|
||||
|
||||
# self.widget_main.ui.ListWidget_vLayout.addWidget(self.widget_card)
|
||||
# 添加测试按钮
|
||||
self.test_button = QPushButton("Get_All")
|
||||
self.test_button.clicked.connect(self.Get_All)
|
||||
self.widget_main.ui.ListWidget_vLayout.addWidget(self.test_button)
|
||||
self.widget_main.ui.ListWidget_vLayout.addWidget(self.widget_card)
|
||||
self.widget_main.ui.Channel_hLayout.addWidget(self.widget_channel)
|
||||
|
||||
|
||||
self.widget_filter_list = []
|
||||
self.filter_controllers = [] # 存储控制器实例
|
||||
|
||||
# 添加测试按钮
|
||||
self.test_button = QPushButton("Test Communication")
|
||||
self.test_button.clicked.connect(self.test_communication)
|
||||
self.widget_main.ui.ListWidget_vLayout.addWidget(self.test_button)
|
||||
|
||||
self.create_filter_widget()
|
||||
self.setup_connections()
|
||||
|
||||
|
||||
def create_filter_widget(self):
|
||||
for i in range(24):
|
||||
for i in range(1, 7):
|
||||
# 创建widget
|
||||
filter_widget = AudioFilterWidget()
|
||||
filter_widget.set_channel_id(i)
|
||||
filter_widget.set_channel_name(f"Channel {i+1}")
|
||||
|
||||
filter_widget.set_channel_name(f"Channel {i}")
|
||||
|
||||
# 创建model和controller
|
||||
model = AudioFilterModel(channel_id=i, channel_name=f"Channel {i+1}")
|
||||
model = AudioFilterModel(channel_id=i, channel_name=f"Channel {i}")
|
||||
controller = AudioFilterController(model)
|
||||
controller.set_widget(filter_widget)
|
||||
|
||||
|
||||
# 连接控制器信号
|
||||
controller.error_occurred.connect(lambda msg: print(f"Error: {msg}"))
|
||||
controller.state_changed.connect(lambda state: print(f"State changed: {state}"))
|
||||
controller.params_synced.connect(lambda: print("Params synced"))
|
||||
|
||||
|
||||
# 存储实例
|
||||
self.widget_filter_list.append(filter_widget)
|
||||
self.filter_controllers.append(controller)
|
||||
@ -71,18 +73,29 @@ class MainWindow(QWidget):
|
||||
def test_communication(self):
|
||||
"""测试通信功能"""
|
||||
print("Testing communication...")
|
||||
|
||||
|
||||
# 测试第一个控制器的通信
|
||||
if self.filter_controllers:
|
||||
controller = self.filter_controllers[0]
|
||||
|
||||
|
||||
# 测试从服务器加载数据
|
||||
print("Testing load from server...")
|
||||
controller.load_from_server()
|
||||
|
||||
|
||||
# 测试同步数据到服务器
|
||||
print("Testing sync to server...")
|
||||
# controller.sync_to_server()
|
||||
controller.sync_to_server()
|
||||
|
||||
def Get_All(self):
|
||||
try:
|
||||
for controller in self.filter_controllers:
|
||||
controller.load_from_server()
|
||||
break
|
||||
time.sleep(1)
|
||||
print("Successfully loaded all filter data")
|
||||
except Exception as e:
|
||||
print(f"Error loading filter data: {e}")
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
import sys
|
||||
@ -90,7 +103,7 @@ if __name__ == '__main__':
|
||||
|
||||
app = QApplication(sys.argv)
|
||||
main_window = MainWindow()
|
||||
|
||||
|
||||
# # 添加测试卡片
|
||||
# for i in range(1, 11):
|
||||
# data = CardData(
|
||||
@ -99,6 +112,6 @@ if __name__ == '__main__':
|
||||
# description=f"这是项目 {i} 的详细描述信息,可以包含多行文本内容。这是一个较长的描述,用于测试换行效果。"
|
||||
# )
|
||||
# main_window.widget_card.add_card_item(data)
|
||||
|
||||
|
||||
main_window.widget_main.show()
|
||||
sys.exit(app.exec())
|
||||
Binary file not shown.
@ -17,7 +17,7 @@ class MainWindow(QWidget):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
# 初始化服务
|
||||
ServiceManager.instance().init_services("127.0.0.1", 1234)
|
||||
ServiceManager.instance().init_services("192.168.5.4", 12345)
|
||||
# 初始化应用控制器
|
||||
self.app_controller = ApplicationController.instance()
|
||||
|
||||
@ -33,7 +33,7 @@ class MainWindow(QWidget):
|
||||
|
||||
# 添加测试按钮
|
||||
self.test_button = QPushButton("Test Communication")
|
||||
self.test_button.clicked.connect(self.test_communication)
|
||||
self.test_button.clicked.connect(self.Get_All)
|
||||
self.widget_main.ui.ListWidget_vLayout.addWidget(self.test_button)
|
||||
|
||||
self.create_filter_widget()
|
||||
@ -84,6 +84,14 @@ class MainWindow(QWidget):
|
||||
print("Testing sync to server...")
|
||||
controller.sync_to_server()
|
||||
|
||||
def Get_All(self):
|
||||
try:
|
||||
for controller in self.filter_controllers:
|
||||
controller.load_from_server()
|
||||
print("Successfully loaded all filter data")
|
||||
except Exception as e:
|
||||
print(f"Error loading filter data: {e}")
|
||||
|
||||
if __name__ == '__main__':
|
||||
import sys
|
||||
from PySide6.QtWidgets import QApplication
|
||||
|
||||
@ -52,18 +52,22 @@ class ApplicationController(QObject):
|
||||
def _on_service_request_complete(self, signal_proxy: SignalProxy):
|
||||
"""服务请求完成的槽函数"""
|
||||
# 找到对应的controller_id
|
||||
print("CCCCCC:signal_proxy.data:", signal_proxy.data)
|
||||
controller_id = self._get_controller_id_for_widget(signal_proxy.widget)
|
||||
|
||||
# to do:这个槽函数要实现对信号的分发,但是不执行具体的业务,
|
||||
# 每个具体的控制器只用注册对应的信号,然后执行具体的业务
|
||||
# print("CCCCCC:signal_proxy.data:", signal_proxy.data)
|
||||
# controller_id = self._get_controller_id_for_widget(signal_proxy.widget)
|
||||
|
||||
# 测试用 返回值类似这种格式 用来标机控件
|
||||
controller_id = "audio_filter"
|
||||
if controller_id:
|
||||
# 转发信号
|
||||
self.signal_params_updated.emit(ControllerSignalData(
|
||||
controller_id=controller_id,
|
||||
widget=signal_proxy.widget,
|
||||
data=signal_proxy.data
|
||||
))
|
||||
# # 测试用 返回值类似这种格式 用来标记控件
|
||||
# controller_id = "audio_filter"
|
||||
# if controller_id:
|
||||
# # 转发信号
|
||||
# self.signal_params_updated.emit(ControllerSignalData(
|
||||
# controller_id=controller_id,
|
||||
# widget=signal_proxy.widget,
|
||||
# data=signal_proxy.data
|
||||
# ))
|
||||
pass
|
||||
|
||||
def _get_controller_id_for_widget(self, widget: QObject) -> Optional[str]:
|
||||
"""根据widget查找对应的controller_id"""
|
||||
|
||||
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
@ -16,9 +16,8 @@ from typing import List, Dict, Optional, Any
|
||||
|
||||
from component.widget_filter.Ui_widget import Ui_Widget
|
||||
from component.widget_filter.checkbox_header import SCheckBoxHeaderView
|
||||
from component.widget_filter.audio_filter_model import AudioFilterModel
|
||||
from component.widget_filter.audio_filter_model import AudioFilterModel, FilterParams, FilterType
|
||||
from component.widget_filter.Ui_widget import Ui_Widget
|
||||
|
||||
import component.widget_filter.resources
|
||||
|
||||
|
||||
@ -463,17 +462,17 @@ class AudioFilterWidget(QWidget):
|
||||
"""处理参数值变化"""
|
||||
if hasattr(self, 'model'):
|
||||
try:
|
||||
float_value = float(value)
|
||||
# float_value = float(value)
|
||||
# 更新model中的通道参数
|
||||
channel_params = self.model.channel_params
|
||||
if param == 'delay':
|
||||
channel_params.delay = float_value
|
||||
channel_params.delay = value
|
||||
elif param == 'volume':
|
||||
channel_params.volume = float_value
|
||||
channel_params.volume = value
|
||||
elif param == 'mix_right':
|
||||
channel_params.mix_right = float_value
|
||||
channel_params.mix_right = value
|
||||
elif param == 'mix_left':
|
||||
channel_params.mix_left = float_value
|
||||
channel_params.mix_left = value
|
||||
|
||||
self.model.set_channel_params(channel_params)
|
||||
except ValueError:
|
||||
@ -529,7 +528,7 @@ class AudioFilterWidget(QWidget):
|
||||
self.ui.tableWidget.setCellWidget(row, 2, combo)
|
||||
|
||||
# 创建新的滤波器项,使用唯一的默认名称
|
||||
self._update_table_row(row, {
|
||||
filter_data = {
|
||||
'filter_name': f"Filter_{row}", # 使用行号创建唯一名称
|
||||
'filter_type': self.filter_types[0],
|
||||
'enabled': True,
|
||||
@ -537,7 +536,22 @@ class AudioFilterWidget(QWidget):
|
||||
'q': 0,
|
||||
'gain': 0,
|
||||
'slope': 0
|
||||
})
|
||||
}
|
||||
|
||||
# 更新表格
|
||||
self._update_table_row(row, filter_data)
|
||||
|
||||
# 更新model数据
|
||||
if hasattr(self, 'model'):
|
||||
filter_params = FilterParams(
|
||||
filter_type=FilterType[self.filter_types[0]],
|
||||
frequency=float(filter_data['freq']),
|
||||
q_value=float(filter_data['q']),
|
||||
gain=float(filter_data['gain']),
|
||||
slope=float(filter_data['slope']),
|
||||
enabled=filter_data['enabled']
|
||||
)
|
||||
self.model.add_filter(filter_params)
|
||||
|
||||
# 发送信号
|
||||
self.filter_added.emit(self.filter_types[0])
|
||||
@ -713,10 +727,10 @@ class AudioFilterWidget(QWidget):
|
||||
|
||||
# 连接模型信号到视图更新方法
|
||||
self.model.dataChanged.connect(self._updateFromModel)
|
||||
self.model.filterAdded.connect(self._handleFilterAdded)
|
||||
self.model.filterRemoved.connect(self._handleFilterRemoved)
|
||||
self.model.filterUpdated.connect(self._handleFilterUpdated)
|
||||
self.model.channelParamsChanged.connect(self._handleChannelParamsChanged)
|
||||
# self.model.filterAdded.connect(self._handleFilterAdded)
|
||||
# self.model.filterRemoved.connect(self._handleFilterRemoved)
|
||||
# self.model.filterUpdated.connect(self._handleFilterUpdated)
|
||||
# self.model.channelParamsChanged.connect(self._handleChannelParamsChanged)
|
||||
|
||||
# 设置初始数据
|
||||
self.set_channel_id(model.channel_id)
|
||||
|
||||
@ -8,6 +8,7 @@ from param_struct_test.params_service import ParamsService
|
||||
from component.widget_filter.audio_filter_model import AudioFilterModel
|
||||
from component.widget_filter.audio_filter_componet import AudioFilterWidget
|
||||
from component.widget_filter.audio_filter_model import FilterParams, FilterType, ChannelParams
|
||||
from param_struct_test.params_service import Response
|
||||
|
||||
class AudioControllerState(Enum):
|
||||
"""音频控制器状态"""
|
||||
@ -78,6 +79,44 @@ class AudioFilterController(QObject):
|
||||
# self.widget.filter_added.connect(self._on_widget_filter_added)
|
||||
# self.widget.filter_deleted.connect(self._on_widget_filter_deleted)
|
||||
# self.widget.filter_enabled_changed.connect(self._on_widget_filter_enabled_changed)
|
||||
self.widget.send_params_clicked.connect(self.sync_to_server)
|
||||
|
||||
def _convert_struct_data_to_model(self, struct_data: Dict[str, Any]) -> Dict[str, Any]:
|
||||
"""将结构体格式数据转换为模型数据"""
|
||||
channel_params = ChannelParams(
|
||||
delay=struct_data.get(f'tuning_parameters.delay_parameters[{self.model.channel_id-1}].delay_data', 0.0),
|
||||
volume=struct_data.get(f'tuning_parameters.volume_parameters[{self.model.channel_id-1}].vol_data', 0.0),
|
||||
mix_right=struct_data.get(f'tuning_parameters.mix_parameters[{self.model.channel_id-1}].mix_right_data', 0.0),
|
||||
mix_left=struct_data.get(f'tuning_parameters.mix_parameters[{self.model.channel_id-1}].mix_left_data', 0.0)
|
||||
)
|
||||
|
||||
filters = []
|
||||
base_idx = (self.model.channel_id - 1) * 20 # 当前通道的均衡器起始索引
|
||||
print("channel_id:", self.model.channel_id)
|
||||
# 遍历当前通道的20个均衡器单元
|
||||
for i in range(20):
|
||||
idx = base_idx + i
|
||||
fc_key = f'tuning_parameters.eq_parameters[{idx}].fc'
|
||||
|
||||
# 如果找不到该索引的频率参数,说明没有更多的均衡器数据了
|
||||
if fc_key not in struct_data:
|
||||
break
|
||||
|
||||
filter_params = FilterParams(
|
||||
filter_type=FilterType(struct_data.get(f'tuning_parameters.eq_parameters[{idx}].filterType', 0)),
|
||||
frequency=struct_data.get(f'tuning_parameters.eq_parameters[{idx}].fc', 0.0),
|
||||
q_value=struct_data.get(f'tuning_parameters.eq_parameters[{idx}].q', 0.0),
|
||||
gain=struct_data.get(f'tuning_parameters.eq_parameters[{idx}].gain', 0.0),
|
||||
slope=struct_data.get(f'tuning_parameters.eq_parameters[{idx}].slope', 0.0)
|
||||
)
|
||||
filters.append(filter_params)
|
||||
|
||||
return {
|
||||
'channel_id': self.model.channel_id,
|
||||
'channel_name': self.model.channel_name,
|
||||
'channel_params': channel_params,
|
||||
'filters': filters
|
||||
}
|
||||
|
||||
@Slot(ControllerSignalData)
|
||||
def _on_params_updated(self, signal_data: ControllerSignalData):
|
||||
@ -87,66 +126,143 @@ class AudioFilterController(QObject):
|
||||
|
||||
try:
|
||||
self.state = AudioControllerState.UPDATING
|
||||
data = signal_data.data
|
||||
|
||||
# 使用ChannelParams类创建实例
|
||||
channel_params = ChannelParams(
|
||||
delay=data.get('delay_data1', 0.0),
|
||||
volume=data.get('vol_data1', 0.0),
|
||||
mix_right=data.get('mix_right_data1', 0.0),
|
||||
mix_left=data.get('mix_left_data1', 0.0)
|
||||
)
|
||||
struct_data = signal_data.data
|
||||
|
||||
# 将结构体数据转换为模型数据
|
||||
model_data = self._convert_struct_data_to_model(struct_data)
|
||||
|
||||
# 更新通道参数
|
||||
self.model.set_channel_params(channel_params)
|
||||
|
||||
# 清除现有滤波器
|
||||
self.model.filters.clear() # 使用filters列表的clear方法替代clear_filters
|
||||
|
||||
# 解析并添加滤波器参数
|
||||
# filter_index = 1
|
||||
# while True:
|
||||
# filter_type_value = data.get(f'filterType1_{filter_index}')
|
||||
# if filter_type_value is None:
|
||||
# break
|
||||
|
||||
# # 使用FilterParams类创建实例
|
||||
# filter_params = FilterParams(
|
||||
# filter_type=FilterType(filter_type_value),
|
||||
# frequency=data.get(f'fc1_{filter_index}', 0.0),
|
||||
# q_value=data.get(f'q1_{filter_index}', 0.0),
|
||||
# gain=data.get(f'gain1_{filter_index}', 0.0),
|
||||
# slope=data.get(f'slope1_{filter_index}', 0.0)
|
||||
# )
|
||||
# self.model.add_filter(filter_params)
|
||||
# filter_index += 1
|
||||
|
||||
self.model.set_channel_params(model_data['channel_params'])
|
||||
print("model_filters:", self.model.filters)
|
||||
# 清除现有滤波器并添加新的滤波器
|
||||
self.model.filters.clear()
|
||||
if model_data['channel_id'] == self.model.channel_id:
|
||||
for filter_param in model_data['filters']:
|
||||
# self.model.add_filter(filter_param)
|
||||
self.model.filters.append(filter_param)
|
||||
|
||||
self.params_synced.emit()
|
||||
self.state = AudioControllerState.IDLE
|
||||
|
||||
except Exception as e:
|
||||
self.state = AudioControllerState.ERROR
|
||||
self.error_occurred.emit(f"Error updating params: {str(e)}")
|
||||
self.error_occurred.emit(f"更新参数时发生错误: {str(e)}")
|
||||
|
||||
def _on_params_updated_new(self, res: Response):
|
||||
"""处理来自ApplicationController的参数更新信号"""
|
||||
try:
|
||||
self.state = AudioControllerState.UPDATING
|
||||
struct_data = res.data
|
||||
|
||||
# 将结构体数据转换为模型数据
|
||||
model_data = self._convert_struct_data_to_model(struct_data)
|
||||
|
||||
# 更新通道参数
|
||||
self.model.set_channel_params(model_data['channel_params'])
|
||||
# 清除现有滤波器
|
||||
self.model.filters.clear()
|
||||
|
||||
if model_data['channel_id'] == self.model.channel_id:
|
||||
for filter_param in model_data['filters']:
|
||||
# 检查滤波器的关键参数是否都为0
|
||||
if not (filter_param.frequency == 0 and
|
||||
filter_param.q_value == 0 and
|
||||
filter_param.gain == 0 and
|
||||
filter_param.slope == 0):
|
||||
self.model.filters.append(filter_param)
|
||||
|
||||
self.widget.setModel(self.model)
|
||||
print("有效的滤波器数量:", len(self.model.filters))
|
||||
|
||||
except Exception as e:
|
||||
self.state = AudioControllerState.ERROR
|
||||
self.error_occurred.emit(f"更新参数时发生错误: {str(e)}")
|
||||
|
||||
def _convert_model_data_to_struct(self, model_data: Dict[str, Any]) -> Dict[str, Any]:
|
||||
"""将模型数据转换为结构体格式"""
|
||||
result = {}
|
||||
channel_id = model_data['channel_id']
|
||||
|
||||
# 添加通道参数
|
||||
channel_params = model_data['channel_params']
|
||||
|
||||
# 混音参数
|
||||
result[f'tuning_parameters.mix_parameters[{channel_id}].ch_n'] = channel_id
|
||||
result[f'tuning_parameters.mix_parameters[{channel_id}].mix_left_data'] = channel_params['mix_left']
|
||||
result[f'tuning_parameters.mix_parameters[{channel_id}].mix_right_data'] = channel_params['mix_right']
|
||||
|
||||
# 延迟参数
|
||||
result[f'tuning_parameters.delay_parameters[{channel_id}].ch_n'] = channel_id
|
||||
result[f'tuning_parameters.delay_parameters[{channel_id}].delay_data'] = channel_params['delay']
|
||||
|
||||
# 音量参数
|
||||
result[f'tuning_parameters.volume_parameters[{channel_id}].ch_n'] = channel_id
|
||||
result[f'tuning_parameters.volume_parameters[{channel_id}].vol_data'] = channel_params['volume']
|
||||
|
||||
# 均衡器参数
|
||||
for i, filter_param in enumerate(model_data['filters']):
|
||||
base_idx = (channel_id) * 20 + i # 每个通道20个均衡器单元
|
||||
result[f'tuning_parameters.eq_parameters[{base_idx}].fc'] = filter_param['frequency']
|
||||
result[f'tuning_parameters.eq_parameters[{base_idx}].q'] = filter_param['q_value']
|
||||
result[f'tuning_parameters.eq_parameters[{base_idx}].gain'] = filter_param['gain']
|
||||
result[f'tuning_parameters.eq_parameters[{base_idx}].slope'] = filter_param['slope']
|
||||
result[f'tuning_parameters.eq_parameters[{base_idx}].filterType'] = filter_param['filter_type'].value
|
||||
|
||||
return result
|
||||
|
||||
def sync_to_server(self):
|
||||
"""同步数据到服务器"""
|
||||
try:
|
||||
self.state = AudioControllerState.UPDATING
|
||||
params = self.model.get_all_data()
|
||||
ServiceManager.instance().params_service.set_params(params)
|
||||
# 转换数据格式
|
||||
struct_params = self._convert_model_data_to_struct(params)
|
||||
print("sync_to_server:", struct_params)
|
||||
ServiceManager.instance().params_service.set_params(self.widget, struct_params)
|
||||
except Exception as e:
|
||||
self.state = AudioControllerState.ERROR
|
||||
self.error_occurred.emit(f"Error syncing to server: {str(e)}")
|
||||
|
||||
|
||||
def load_from_server(self):
|
||||
"""从服务器加载数据"""
|
||||
try:
|
||||
print("BBBBBB:load_from_server")
|
||||
self.state = AudioControllerState.UPDATING
|
||||
ServiceManager.instance().params_service.get_params(self.widget)
|
||||
channel_id = self.model.channel_id
|
||||
|
||||
# 构建需要获取的参数键列表
|
||||
param_keys = []
|
||||
|
||||
# 添加通道基本参数的键
|
||||
param_keys.extend([
|
||||
f'tuning_parameters.mix_parameters[{channel_id}].ch_n',
|
||||
f'tuning_parameters.mix_parameters[{channel_id}].mix_left_data',
|
||||
f'tuning_parameters.mix_parameters[{channel_id}].mix_right_data',
|
||||
f'tuning_parameters.delay_parameters[{channel_id}].ch_n',
|
||||
f'tuning_parameters.delay_parameters[{channel_id}].delay_data',
|
||||
f'tuning_parameters.volume_parameters[{channel_id}].ch_n',
|
||||
f'tuning_parameters.volume_parameters[{channel_id}].vol_data'
|
||||
])
|
||||
|
||||
# 添加当前通道的20个滤波器的所有参数键
|
||||
base_idx = (channel_id) * 20
|
||||
for i in range(20): # 固定生成20个滤波器的参数键
|
||||
idx = base_idx + i
|
||||
param_keys.extend([
|
||||
f'tuning_parameters.eq_parameters[{idx}].fc',
|
||||
f'tuning_parameters.eq_parameters[{idx}].q',
|
||||
f'tuning_parameters.eq_parameters[{idx}].gain',
|
||||
f'tuning_parameters.eq_parameters[{idx}].slope',
|
||||
f'tuning_parameters.eq_parameters[{idx}].filterType'
|
||||
])
|
||||
print(f"aa param_keys:",param_keys)
|
||||
ServiceManager.instance().params_service.get_params(
|
||||
self.widget,
|
||||
param_keys,
|
||||
callback=self._on_params_updated_new
|
||||
)
|
||||
except Exception as e:
|
||||
self.state = AudioControllerState.ERROR
|
||||
self.error_occurred.emit(f"Error loading from server: {str(e)}")
|
||||
self.error_occurred.emit(f"从服务器加载数据时发生错误: {str(e)}")
|
||||
|
||||
# 模型信号处理器
|
||||
def _on_model_data_changed(self):
|
||||
|
||||
@ -88,7 +88,7 @@ class AudioFilterModel(QObject):
|
||||
def add_filter(self, filter_params: FilterParams):
|
||||
"""添加新的滤波器"""
|
||||
self.filters.append(filter_params)
|
||||
self.filterAdded.emit(len(self.filters) - 1)
|
||||
# self.filterAdded.emit(len(self.filters) - 1)
|
||||
self.updateData()
|
||||
|
||||
def remove_filter(self, index: int):
|
||||
|
||||
Binary file not shown.
Binary file not shown.
Binary file not shown.
644
doc/struct_members.txt
Normal file
644
doc/struct_members.txt
Normal file
@ -0,0 +1,644 @@
|
||||
dataset.audio_mode: offset 0 (int32_t)
|
||||
dataset.send_action: offset 4 (int32_t)
|
||||
dataset.tuning_parameters.mix_parameters[0].ch_n: offset 8 (int32_t)
|
||||
dataset.tuning_parameters.mix_parameters[1].ch_n: offset 20 (int32_t)
|
||||
dataset.tuning_parameters.mix_parameters[2].ch_n: offset 32 (int32_t)
|
||||
dataset.tuning_parameters.mix_parameters[3].ch_n: offset 44 (int32_t)
|
||||
dataset.tuning_parameters.mix_parameters[4].ch_n: offset 56 (int32_t)
|
||||
dataset.tuning_parameters.mix_parameters[5].ch_n: offset 68 (int32_t)
|
||||
dataset.tuning_parameters.mix_parameters[0].mix_left_data: offset 12 (float)
|
||||
dataset.tuning_parameters.mix_parameters[1].mix_left_data: offset 24 (float)
|
||||
dataset.tuning_parameters.mix_parameters[2].mix_left_data: offset 36 (float)
|
||||
dataset.tuning_parameters.mix_parameters[3].mix_left_data: offset 48 (float)
|
||||
dataset.tuning_parameters.mix_parameters[4].mix_left_data: offset 60 (float)
|
||||
dataset.tuning_parameters.mix_parameters[5].mix_left_data: offset 72 (float)
|
||||
dataset.tuning_parameters.mix_parameters[0].mix_right_data: offset 16 (float)
|
||||
dataset.tuning_parameters.mix_parameters[1].mix_right_data: offset 28 (float)
|
||||
dataset.tuning_parameters.mix_parameters[2].mix_right_data: offset 40 (float)
|
||||
dataset.tuning_parameters.mix_parameters[3].mix_right_data: offset 52 (float)
|
||||
dataset.tuning_parameters.mix_parameters[4].mix_right_data: offset 64 (float)
|
||||
dataset.tuning_parameters.mix_parameters[5].mix_right_data: offset 76 (float)
|
||||
dataset.tuning_parameters.eq_parameters[0].fc: offset 80 (float)
|
||||
dataset.tuning_parameters.eq_parameters[1].fc: offset 100 (float)
|
||||
dataset.tuning_parameters.eq_parameters[2].fc: offset 120 (float)
|
||||
dataset.tuning_parameters.eq_parameters[3].fc: offset 140 (float)
|
||||
dataset.tuning_parameters.eq_parameters[4].fc: offset 160 (float)
|
||||
dataset.tuning_parameters.eq_parameters[5].fc: offset 180 (float)
|
||||
dataset.tuning_parameters.eq_parameters[6].fc: offset 200 (float)
|
||||
dataset.tuning_parameters.eq_parameters[7].fc: offset 220 (float)
|
||||
dataset.tuning_parameters.eq_parameters[8].fc: offset 240 (float)
|
||||
dataset.tuning_parameters.eq_parameters[9].fc: offset 260 (float)
|
||||
dataset.tuning_parameters.eq_parameters[10].fc: offset 280 (float)
|
||||
dataset.tuning_parameters.eq_parameters[11].fc: offset 300 (float)
|
||||
dataset.tuning_parameters.eq_parameters[12].fc: offset 320 (float)
|
||||
dataset.tuning_parameters.eq_parameters[13].fc: offset 340 (float)
|
||||
dataset.tuning_parameters.eq_parameters[14].fc: offset 360 (float)
|
||||
dataset.tuning_parameters.eq_parameters[15].fc: offset 380 (float)
|
||||
dataset.tuning_parameters.eq_parameters[16].fc: offset 400 (float)
|
||||
dataset.tuning_parameters.eq_parameters[17].fc: offset 420 (float)
|
||||
dataset.tuning_parameters.eq_parameters[18].fc: offset 440 (float)
|
||||
dataset.tuning_parameters.eq_parameters[19].fc: offset 460 (float)
|
||||
dataset.tuning_parameters.eq_parameters[20].fc: offset 480 (float)
|
||||
dataset.tuning_parameters.eq_parameters[21].fc: offset 500 (float)
|
||||
dataset.tuning_parameters.eq_parameters[22].fc: offset 520 (float)
|
||||
dataset.tuning_parameters.eq_parameters[23].fc: offset 540 (float)
|
||||
dataset.tuning_parameters.eq_parameters[24].fc: offset 560 (float)
|
||||
dataset.tuning_parameters.eq_parameters[25].fc: offset 580 (float)
|
||||
dataset.tuning_parameters.eq_parameters[26].fc: offset 600 (float)
|
||||
dataset.tuning_parameters.eq_parameters[27].fc: offset 620 (float)
|
||||
dataset.tuning_parameters.eq_parameters[28].fc: offset 640 (float)
|
||||
dataset.tuning_parameters.eq_parameters[29].fc: offset 660 (float)
|
||||
dataset.tuning_parameters.eq_parameters[30].fc: offset 680 (float)
|
||||
dataset.tuning_parameters.eq_parameters[31].fc: offset 700 (float)
|
||||
dataset.tuning_parameters.eq_parameters[32].fc: offset 720 (float)
|
||||
dataset.tuning_parameters.eq_parameters[33].fc: offset 740 (float)
|
||||
dataset.tuning_parameters.eq_parameters[34].fc: offset 760 (float)
|
||||
dataset.tuning_parameters.eq_parameters[35].fc: offset 780 (float)
|
||||
dataset.tuning_parameters.eq_parameters[36].fc: offset 800 (float)
|
||||
dataset.tuning_parameters.eq_parameters[37].fc: offset 820 (float)
|
||||
dataset.tuning_parameters.eq_parameters[38].fc: offset 840 (float)
|
||||
dataset.tuning_parameters.eq_parameters[39].fc: offset 860 (float)
|
||||
dataset.tuning_parameters.eq_parameters[40].fc: offset 880 (float)
|
||||
dataset.tuning_parameters.eq_parameters[41].fc: offset 900 (float)
|
||||
dataset.tuning_parameters.eq_parameters[42].fc: offset 920 (float)
|
||||
dataset.tuning_parameters.eq_parameters[43].fc: offset 940 (float)
|
||||
dataset.tuning_parameters.eq_parameters[44].fc: offset 960 (float)
|
||||
dataset.tuning_parameters.eq_parameters[45].fc: offset 980 (float)
|
||||
dataset.tuning_parameters.eq_parameters[46].fc: offset 1000 (float)
|
||||
dataset.tuning_parameters.eq_parameters[47].fc: offset 1020 (float)
|
||||
dataset.tuning_parameters.eq_parameters[48].fc: offset 1040 (float)
|
||||
dataset.tuning_parameters.eq_parameters[49].fc: offset 1060 (float)
|
||||
dataset.tuning_parameters.eq_parameters[50].fc: offset 1080 (float)
|
||||
dataset.tuning_parameters.eq_parameters[51].fc: offset 1100 (float)
|
||||
dataset.tuning_parameters.eq_parameters[52].fc: offset 1120 (float)
|
||||
dataset.tuning_parameters.eq_parameters[53].fc: offset 1140 (float)
|
||||
dataset.tuning_parameters.eq_parameters[54].fc: offset 1160 (float)
|
||||
dataset.tuning_parameters.eq_parameters[55].fc: offset 1180 (float)
|
||||
dataset.tuning_parameters.eq_parameters[56].fc: offset 1200 (float)
|
||||
dataset.tuning_parameters.eq_parameters[57].fc: offset 1220 (float)
|
||||
dataset.tuning_parameters.eq_parameters[58].fc: offset 1240 (float)
|
||||
dataset.tuning_parameters.eq_parameters[59].fc: offset 1260 (float)
|
||||
dataset.tuning_parameters.eq_parameters[60].fc: offset 1280 (float)
|
||||
dataset.tuning_parameters.eq_parameters[61].fc: offset 1300 (float)
|
||||
dataset.tuning_parameters.eq_parameters[62].fc: offset 1320 (float)
|
||||
dataset.tuning_parameters.eq_parameters[63].fc: offset 1340 (float)
|
||||
dataset.tuning_parameters.eq_parameters[64].fc: offset 1360 (float)
|
||||
dataset.tuning_parameters.eq_parameters[65].fc: offset 1380 (float)
|
||||
dataset.tuning_parameters.eq_parameters[66].fc: offset 1400 (float)
|
||||
dataset.tuning_parameters.eq_parameters[67].fc: offset 1420 (float)
|
||||
dataset.tuning_parameters.eq_parameters[68].fc: offset 1440 (float)
|
||||
dataset.tuning_parameters.eq_parameters[69].fc: offset 1460 (float)
|
||||
dataset.tuning_parameters.eq_parameters[70].fc: offset 1480 (float)
|
||||
dataset.tuning_parameters.eq_parameters[71].fc: offset 1500 (float)
|
||||
dataset.tuning_parameters.eq_parameters[72].fc: offset 1520 (float)
|
||||
dataset.tuning_parameters.eq_parameters[73].fc: offset 1540 (float)
|
||||
dataset.tuning_parameters.eq_parameters[74].fc: offset 1560 (float)
|
||||
dataset.tuning_parameters.eq_parameters[75].fc: offset 1580 (float)
|
||||
dataset.tuning_parameters.eq_parameters[76].fc: offset 1600 (float)
|
||||
dataset.tuning_parameters.eq_parameters[77].fc: offset 1620 (float)
|
||||
dataset.tuning_parameters.eq_parameters[78].fc: offset 1640 (float)
|
||||
dataset.tuning_parameters.eq_parameters[79].fc: offset 1660 (float)
|
||||
dataset.tuning_parameters.eq_parameters[80].fc: offset 1680 (float)
|
||||
dataset.tuning_parameters.eq_parameters[81].fc: offset 1700 (float)
|
||||
dataset.tuning_parameters.eq_parameters[82].fc: offset 1720 (float)
|
||||
dataset.tuning_parameters.eq_parameters[83].fc: offset 1740 (float)
|
||||
dataset.tuning_parameters.eq_parameters[84].fc: offset 1760 (float)
|
||||
dataset.tuning_parameters.eq_parameters[85].fc: offset 1780 (float)
|
||||
dataset.tuning_parameters.eq_parameters[86].fc: offset 1800 (float)
|
||||
dataset.tuning_parameters.eq_parameters[87].fc: offset 1820 (float)
|
||||
dataset.tuning_parameters.eq_parameters[88].fc: offset 1840 (float)
|
||||
dataset.tuning_parameters.eq_parameters[89].fc: offset 1860 (float)
|
||||
dataset.tuning_parameters.eq_parameters[90].fc: offset 1880 (float)
|
||||
dataset.tuning_parameters.eq_parameters[91].fc: offset 1900 (float)
|
||||
dataset.tuning_parameters.eq_parameters[92].fc: offset 1920 (float)
|
||||
dataset.tuning_parameters.eq_parameters[93].fc: offset 1940 (float)
|
||||
dataset.tuning_parameters.eq_parameters[94].fc: offset 1960 (float)
|
||||
dataset.tuning_parameters.eq_parameters[95].fc: offset 1980 (float)
|
||||
dataset.tuning_parameters.eq_parameters[96].fc: offset 2000 (float)
|
||||
dataset.tuning_parameters.eq_parameters[97].fc: offset 2020 (float)
|
||||
dataset.tuning_parameters.eq_parameters[98].fc: offset 2040 (float)
|
||||
dataset.tuning_parameters.eq_parameters[99].fc: offset 2060 (float)
|
||||
dataset.tuning_parameters.eq_parameters[100].fc: offset 2080 (float)
|
||||
dataset.tuning_parameters.eq_parameters[101].fc: offset 2100 (float)
|
||||
dataset.tuning_parameters.eq_parameters[102].fc: offset 2120 (float)
|
||||
dataset.tuning_parameters.eq_parameters[103].fc: offset 2140 (float)
|
||||
dataset.tuning_parameters.eq_parameters[104].fc: offset 2160 (float)
|
||||
dataset.tuning_parameters.eq_parameters[105].fc: offset 2180 (float)
|
||||
dataset.tuning_parameters.eq_parameters[106].fc: offset 2200 (float)
|
||||
dataset.tuning_parameters.eq_parameters[107].fc: offset 2220 (float)
|
||||
dataset.tuning_parameters.eq_parameters[108].fc: offset 2240 (float)
|
||||
dataset.tuning_parameters.eq_parameters[109].fc: offset 2260 (float)
|
||||
dataset.tuning_parameters.eq_parameters[110].fc: offset 2280 (float)
|
||||
dataset.tuning_parameters.eq_parameters[111].fc: offset 2300 (float)
|
||||
dataset.tuning_parameters.eq_parameters[112].fc: offset 2320 (float)
|
||||
dataset.tuning_parameters.eq_parameters[113].fc: offset 2340 (float)
|
||||
dataset.tuning_parameters.eq_parameters[114].fc: offset 2360 (float)
|
||||
dataset.tuning_parameters.eq_parameters[115].fc: offset 2380 (float)
|
||||
dataset.tuning_parameters.eq_parameters[116].fc: offset 2400 (float)
|
||||
dataset.tuning_parameters.eq_parameters[117].fc: offset 2420 (float)
|
||||
dataset.tuning_parameters.eq_parameters[118].fc: offset 2440 (float)
|
||||
dataset.tuning_parameters.eq_parameters[119].fc: offset 2460 (float)
|
||||
dataset.tuning_parameters.eq_parameters[0].q: offset 84 (float)
|
||||
dataset.tuning_parameters.eq_parameters[1].q: offset 104 (float)
|
||||
dataset.tuning_parameters.eq_parameters[2].q: offset 124 (float)
|
||||
dataset.tuning_parameters.eq_parameters[3].q: offset 144 (float)
|
||||
dataset.tuning_parameters.eq_parameters[4].q: offset 164 (float)
|
||||
dataset.tuning_parameters.eq_parameters[5].q: offset 184 (float)
|
||||
dataset.tuning_parameters.eq_parameters[6].q: offset 204 (float)
|
||||
dataset.tuning_parameters.eq_parameters[7].q: offset 224 (float)
|
||||
dataset.tuning_parameters.eq_parameters[8].q: offset 244 (float)
|
||||
dataset.tuning_parameters.eq_parameters[9].q: offset 264 (float)
|
||||
dataset.tuning_parameters.eq_parameters[10].q: offset 284 (float)
|
||||
dataset.tuning_parameters.eq_parameters[11].q: offset 304 (float)
|
||||
dataset.tuning_parameters.eq_parameters[12].q: offset 324 (float)
|
||||
dataset.tuning_parameters.eq_parameters[13].q: offset 344 (float)
|
||||
dataset.tuning_parameters.eq_parameters[14].q: offset 364 (float)
|
||||
dataset.tuning_parameters.eq_parameters[15].q: offset 384 (float)
|
||||
dataset.tuning_parameters.eq_parameters[16].q: offset 404 (float)
|
||||
dataset.tuning_parameters.eq_parameters[17].q: offset 424 (float)
|
||||
dataset.tuning_parameters.eq_parameters[18].q: offset 444 (float)
|
||||
dataset.tuning_parameters.eq_parameters[19].q: offset 464 (float)
|
||||
dataset.tuning_parameters.eq_parameters[20].q: offset 484 (float)
|
||||
dataset.tuning_parameters.eq_parameters[21].q: offset 504 (float)
|
||||
dataset.tuning_parameters.eq_parameters[22].q: offset 524 (float)
|
||||
dataset.tuning_parameters.eq_parameters[23].q: offset 544 (float)
|
||||
dataset.tuning_parameters.eq_parameters[24].q: offset 564 (float)
|
||||
dataset.tuning_parameters.eq_parameters[25].q: offset 584 (float)
|
||||
dataset.tuning_parameters.eq_parameters[26].q: offset 604 (float)
|
||||
dataset.tuning_parameters.eq_parameters[27].q: offset 624 (float)
|
||||
dataset.tuning_parameters.eq_parameters[28].q: offset 644 (float)
|
||||
dataset.tuning_parameters.eq_parameters[29].q: offset 664 (float)
|
||||
dataset.tuning_parameters.eq_parameters[30].q: offset 684 (float)
|
||||
dataset.tuning_parameters.eq_parameters[31].q: offset 704 (float)
|
||||
dataset.tuning_parameters.eq_parameters[32].q: offset 724 (float)
|
||||
dataset.tuning_parameters.eq_parameters[33].q: offset 744 (float)
|
||||
dataset.tuning_parameters.eq_parameters[34].q: offset 764 (float)
|
||||
dataset.tuning_parameters.eq_parameters[35].q: offset 784 (float)
|
||||
dataset.tuning_parameters.eq_parameters[36].q: offset 804 (float)
|
||||
dataset.tuning_parameters.eq_parameters[37].q: offset 824 (float)
|
||||
dataset.tuning_parameters.eq_parameters[38].q: offset 844 (float)
|
||||
dataset.tuning_parameters.eq_parameters[39].q: offset 864 (float)
|
||||
dataset.tuning_parameters.eq_parameters[40].q: offset 884 (float)
|
||||
dataset.tuning_parameters.eq_parameters[41].q: offset 904 (float)
|
||||
dataset.tuning_parameters.eq_parameters[42].q: offset 924 (float)
|
||||
dataset.tuning_parameters.eq_parameters[43].q: offset 944 (float)
|
||||
dataset.tuning_parameters.eq_parameters[44].q: offset 964 (float)
|
||||
dataset.tuning_parameters.eq_parameters[45].q: offset 984 (float)
|
||||
dataset.tuning_parameters.eq_parameters[46].q: offset 1004 (float)
|
||||
dataset.tuning_parameters.eq_parameters[47].q: offset 1024 (float)
|
||||
dataset.tuning_parameters.eq_parameters[48].q: offset 1044 (float)
|
||||
dataset.tuning_parameters.eq_parameters[49].q: offset 1064 (float)
|
||||
dataset.tuning_parameters.eq_parameters[50].q: offset 1084 (float)
|
||||
dataset.tuning_parameters.eq_parameters[51].q: offset 1104 (float)
|
||||
dataset.tuning_parameters.eq_parameters[52].q: offset 1124 (float)
|
||||
dataset.tuning_parameters.eq_parameters[53].q: offset 1144 (float)
|
||||
dataset.tuning_parameters.eq_parameters[54].q: offset 1164 (float)
|
||||
dataset.tuning_parameters.eq_parameters[55].q: offset 1184 (float)
|
||||
dataset.tuning_parameters.eq_parameters[56].q: offset 1204 (float)
|
||||
dataset.tuning_parameters.eq_parameters[57].q: offset 1224 (float)
|
||||
dataset.tuning_parameters.eq_parameters[58].q: offset 1244 (float)
|
||||
dataset.tuning_parameters.eq_parameters[59].q: offset 1264 (float)
|
||||
dataset.tuning_parameters.eq_parameters[60].q: offset 1284 (float)
|
||||
dataset.tuning_parameters.eq_parameters[61].q: offset 1304 (float)
|
||||
dataset.tuning_parameters.eq_parameters[62].q: offset 1324 (float)
|
||||
dataset.tuning_parameters.eq_parameters[63].q: offset 1344 (float)
|
||||
dataset.tuning_parameters.eq_parameters[64].q: offset 1364 (float)
|
||||
dataset.tuning_parameters.eq_parameters[65].q: offset 1384 (float)
|
||||
dataset.tuning_parameters.eq_parameters[66].q: offset 1404 (float)
|
||||
dataset.tuning_parameters.eq_parameters[67].q: offset 1424 (float)
|
||||
dataset.tuning_parameters.eq_parameters[68].q: offset 1444 (float)
|
||||
dataset.tuning_parameters.eq_parameters[69].q: offset 1464 (float)
|
||||
dataset.tuning_parameters.eq_parameters[70].q: offset 1484 (float)
|
||||
dataset.tuning_parameters.eq_parameters[71].q: offset 1504 (float)
|
||||
dataset.tuning_parameters.eq_parameters[72].q: offset 1524 (float)
|
||||
dataset.tuning_parameters.eq_parameters[73].q: offset 1544 (float)
|
||||
dataset.tuning_parameters.eq_parameters[74].q: offset 1564 (float)
|
||||
dataset.tuning_parameters.eq_parameters[75].q: offset 1584 (float)
|
||||
dataset.tuning_parameters.eq_parameters[76].q: offset 1604 (float)
|
||||
dataset.tuning_parameters.eq_parameters[77].q: offset 1624 (float)
|
||||
dataset.tuning_parameters.eq_parameters[78].q: offset 1644 (float)
|
||||
dataset.tuning_parameters.eq_parameters[79].q: offset 1664 (float)
|
||||
dataset.tuning_parameters.eq_parameters[80].q: offset 1684 (float)
|
||||
dataset.tuning_parameters.eq_parameters[81].q: offset 1704 (float)
|
||||
dataset.tuning_parameters.eq_parameters[82].q: offset 1724 (float)
|
||||
dataset.tuning_parameters.eq_parameters[83].q: offset 1744 (float)
|
||||
dataset.tuning_parameters.eq_parameters[84].q: offset 1764 (float)
|
||||
dataset.tuning_parameters.eq_parameters[85].q: offset 1784 (float)
|
||||
dataset.tuning_parameters.eq_parameters[86].q: offset 1804 (float)
|
||||
dataset.tuning_parameters.eq_parameters[87].q: offset 1824 (float)
|
||||
dataset.tuning_parameters.eq_parameters[88].q: offset 1844 (float)
|
||||
dataset.tuning_parameters.eq_parameters[89].q: offset 1864 (float)
|
||||
dataset.tuning_parameters.eq_parameters[90].q: offset 1884 (float)
|
||||
dataset.tuning_parameters.eq_parameters[91].q: offset 1904 (float)
|
||||
dataset.tuning_parameters.eq_parameters[92].q: offset 1924 (float)
|
||||
dataset.tuning_parameters.eq_parameters[93].q: offset 1944 (float)
|
||||
dataset.tuning_parameters.eq_parameters[94].q: offset 1964 (float)
|
||||
dataset.tuning_parameters.eq_parameters[95].q: offset 1984 (float)
|
||||
dataset.tuning_parameters.eq_parameters[96].q: offset 2004 (float)
|
||||
dataset.tuning_parameters.eq_parameters[97].q: offset 2024 (float)
|
||||
dataset.tuning_parameters.eq_parameters[98].q: offset 2044 (float)
|
||||
dataset.tuning_parameters.eq_parameters[99].q: offset 2064 (float)
|
||||
dataset.tuning_parameters.eq_parameters[100].q: offset 2084 (float)
|
||||
dataset.tuning_parameters.eq_parameters[101].q: offset 2104 (float)
|
||||
dataset.tuning_parameters.eq_parameters[102].q: offset 2124 (float)
|
||||
dataset.tuning_parameters.eq_parameters[103].q: offset 2144 (float)
|
||||
dataset.tuning_parameters.eq_parameters[104].q: offset 2164 (float)
|
||||
dataset.tuning_parameters.eq_parameters[105].q: offset 2184 (float)
|
||||
dataset.tuning_parameters.eq_parameters[106].q: offset 2204 (float)
|
||||
dataset.tuning_parameters.eq_parameters[107].q: offset 2224 (float)
|
||||
dataset.tuning_parameters.eq_parameters[108].q: offset 2244 (float)
|
||||
dataset.tuning_parameters.eq_parameters[109].q: offset 2264 (float)
|
||||
dataset.tuning_parameters.eq_parameters[110].q: offset 2284 (float)
|
||||
dataset.tuning_parameters.eq_parameters[111].q: offset 2304 (float)
|
||||
dataset.tuning_parameters.eq_parameters[112].q: offset 2324 (float)
|
||||
dataset.tuning_parameters.eq_parameters[113].q: offset 2344 (float)
|
||||
dataset.tuning_parameters.eq_parameters[114].q: offset 2364 (float)
|
||||
dataset.tuning_parameters.eq_parameters[115].q: offset 2384 (float)
|
||||
dataset.tuning_parameters.eq_parameters[116].q: offset 2404 (float)
|
||||
dataset.tuning_parameters.eq_parameters[117].q: offset 2424 (float)
|
||||
dataset.tuning_parameters.eq_parameters[118].q: offset 2444 (float)
|
||||
dataset.tuning_parameters.eq_parameters[119].q: offset 2464 (float)
|
||||
dataset.tuning_parameters.eq_parameters[0].gain: offset 88 (float)
|
||||
dataset.tuning_parameters.eq_parameters[1].gain: offset 108 (float)
|
||||
dataset.tuning_parameters.eq_parameters[2].gain: offset 128 (float)
|
||||
dataset.tuning_parameters.eq_parameters[3].gain: offset 148 (float)
|
||||
dataset.tuning_parameters.eq_parameters[4].gain: offset 168 (float)
|
||||
dataset.tuning_parameters.eq_parameters[5].gain: offset 188 (float)
|
||||
dataset.tuning_parameters.eq_parameters[6].gain: offset 208 (float)
|
||||
dataset.tuning_parameters.eq_parameters[7].gain: offset 228 (float)
|
||||
dataset.tuning_parameters.eq_parameters[8].gain: offset 248 (float)
|
||||
dataset.tuning_parameters.eq_parameters[9].gain: offset 268 (float)
|
||||
dataset.tuning_parameters.eq_parameters[10].gain: offset 288 (float)
|
||||
dataset.tuning_parameters.eq_parameters[11].gain: offset 308 (float)
|
||||
dataset.tuning_parameters.eq_parameters[12].gain: offset 328 (float)
|
||||
dataset.tuning_parameters.eq_parameters[13].gain: offset 348 (float)
|
||||
dataset.tuning_parameters.eq_parameters[14].gain: offset 368 (float)
|
||||
dataset.tuning_parameters.eq_parameters[15].gain: offset 388 (float)
|
||||
dataset.tuning_parameters.eq_parameters[16].gain: offset 408 (float)
|
||||
dataset.tuning_parameters.eq_parameters[17].gain: offset 428 (float)
|
||||
dataset.tuning_parameters.eq_parameters[18].gain: offset 448 (float)
|
||||
dataset.tuning_parameters.eq_parameters[19].gain: offset 468 (float)
|
||||
dataset.tuning_parameters.eq_parameters[20].gain: offset 488 (float)
|
||||
dataset.tuning_parameters.eq_parameters[21].gain: offset 508 (float)
|
||||
dataset.tuning_parameters.eq_parameters[22].gain: offset 528 (float)
|
||||
dataset.tuning_parameters.eq_parameters[23].gain: offset 548 (float)
|
||||
dataset.tuning_parameters.eq_parameters[24].gain: offset 568 (float)
|
||||
dataset.tuning_parameters.eq_parameters[25].gain: offset 588 (float)
|
||||
dataset.tuning_parameters.eq_parameters[26].gain: offset 608 (float)
|
||||
dataset.tuning_parameters.eq_parameters[27].gain: offset 628 (float)
|
||||
dataset.tuning_parameters.eq_parameters[28].gain: offset 648 (float)
|
||||
dataset.tuning_parameters.eq_parameters[29].gain: offset 668 (float)
|
||||
dataset.tuning_parameters.eq_parameters[30].gain: offset 688 (float)
|
||||
dataset.tuning_parameters.eq_parameters[31].gain: offset 708 (float)
|
||||
dataset.tuning_parameters.eq_parameters[32].gain: offset 728 (float)
|
||||
dataset.tuning_parameters.eq_parameters[33].gain: offset 748 (float)
|
||||
dataset.tuning_parameters.eq_parameters[34].gain: offset 768 (float)
|
||||
dataset.tuning_parameters.eq_parameters[35].gain: offset 788 (float)
|
||||
dataset.tuning_parameters.eq_parameters[36].gain: offset 808 (float)
|
||||
dataset.tuning_parameters.eq_parameters[37].gain: offset 828 (float)
|
||||
dataset.tuning_parameters.eq_parameters[38].gain: offset 848 (float)
|
||||
dataset.tuning_parameters.eq_parameters[39].gain: offset 868 (float)
|
||||
dataset.tuning_parameters.eq_parameters[40].gain: offset 888 (float)
|
||||
dataset.tuning_parameters.eq_parameters[41].gain: offset 908 (float)
|
||||
dataset.tuning_parameters.eq_parameters[42].gain: offset 928 (float)
|
||||
dataset.tuning_parameters.eq_parameters[43].gain: offset 948 (float)
|
||||
dataset.tuning_parameters.eq_parameters[44].gain: offset 968 (float)
|
||||
dataset.tuning_parameters.eq_parameters[45].gain: offset 988 (float)
|
||||
dataset.tuning_parameters.eq_parameters[46].gain: offset 1008 (float)
|
||||
dataset.tuning_parameters.eq_parameters[47].gain: offset 1028 (float)
|
||||
dataset.tuning_parameters.eq_parameters[48].gain: offset 1048 (float)
|
||||
dataset.tuning_parameters.eq_parameters[49].gain: offset 1068 (float)
|
||||
dataset.tuning_parameters.eq_parameters[50].gain: offset 1088 (float)
|
||||
dataset.tuning_parameters.eq_parameters[51].gain: offset 1108 (float)
|
||||
dataset.tuning_parameters.eq_parameters[52].gain: offset 1128 (float)
|
||||
dataset.tuning_parameters.eq_parameters[53].gain: offset 1148 (float)
|
||||
dataset.tuning_parameters.eq_parameters[54].gain: offset 1168 (float)
|
||||
dataset.tuning_parameters.eq_parameters[55].gain: offset 1188 (float)
|
||||
dataset.tuning_parameters.eq_parameters[56].gain: offset 1208 (float)
|
||||
dataset.tuning_parameters.eq_parameters[57].gain: offset 1228 (float)
|
||||
dataset.tuning_parameters.eq_parameters[58].gain: offset 1248 (float)
|
||||
dataset.tuning_parameters.eq_parameters[59].gain: offset 1268 (float)
|
||||
dataset.tuning_parameters.eq_parameters[60].gain: offset 1288 (float)
|
||||
dataset.tuning_parameters.eq_parameters[61].gain: offset 1308 (float)
|
||||
dataset.tuning_parameters.eq_parameters[62].gain: offset 1328 (float)
|
||||
dataset.tuning_parameters.eq_parameters[63].gain: offset 1348 (float)
|
||||
dataset.tuning_parameters.eq_parameters[64].gain: offset 1368 (float)
|
||||
dataset.tuning_parameters.eq_parameters[65].gain: offset 1388 (float)
|
||||
dataset.tuning_parameters.eq_parameters[66].gain: offset 1408 (float)
|
||||
dataset.tuning_parameters.eq_parameters[67].gain: offset 1428 (float)
|
||||
dataset.tuning_parameters.eq_parameters[68].gain: offset 1448 (float)
|
||||
dataset.tuning_parameters.eq_parameters[69].gain: offset 1468 (float)
|
||||
dataset.tuning_parameters.eq_parameters[70].gain: offset 1488 (float)
|
||||
dataset.tuning_parameters.eq_parameters[71].gain: offset 1508 (float)
|
||||
dataset.tuning_parameters.eq_parameters[72].gain: offset 1528 (float)
|
||||
dataset.tuning_parameters.eq_parameters[73].gain: offset 1548 (float)
|
||||
dataset.tuning_parameters.eq_parameters[74].gain: offset 1568 (float)
|
||||
dataset.tuning_parameters.eq_parameters[75].gain: offset 1588 (float)
|
||||
dataset.tuning_parameters.eq_parameters[76].gain: offset 1608 (float)
|
||||
dataset.tuning_parameters.eq_parameters[77].gain: offset 1628 (float)
|
||||
dataset.tuning_parameters.eq_parameters[78].gain: offset 1648 (float)
|
||||
dataset.tuning_parameters.eq_parameters[79].gain: offset 1668 (float)
|
||||
dataset.tuning_parameters.eq_parameters[80].gain: offset 1688 (float)
|
||||
dataset.tuning_parameters.eq_parameters[81].gain: offset 1708 (float)
|
||||
dataset.tuning_parameters.eq_parameters[82].gain: offset 1728 (float)
|
||||
dataset.tuning_parameters.eq_parameters[83].gain: offset 1748 (float)
|
||||
dataset.tuning_parameters.eq_parameters[84].gain: offset 1768 (float)
|
||||
dataset.tuning_parameters.eq_parameters[85].gain: offset 1788 (float)
|
||||
dataset.tuning_parameters.eq_parameters[86].gain: offset 1808 (float)
|
||||
dataset.tuning_parameters.eq_parameters[87].gain: offset 1828 (float)
|
||||
dataset.tuning_parameters.eq_parameters[88].gain: offset 1848 (float)
|
||||
dataset.tuning_parameters.eq_parameters[89].gain: offset 1868 (float)
|
||||
dataset.tuning_parameters.eq_parameters[90].gain: offset 1888 (float)
|
||||
dataset.tuning_parameters.eq_parameters[91].gain: offset 1908 (float)
|
||||
dataset.tuning_parameters.eq_parameters[92].gain: offset 1928 (float)
|
||||
dataset.tuning_parameters.eq_parameters[93].gain: offset 1948 (float)
|
||||
dataset.tuning_parameters.eq_parameters[94].gain: offset 1968 (float)
|
||||
dataset.tuning_parameters.eq_parameters[95].gain: offset 1988 (float)
|
||||
dataset.tuning_parameters.eq_parameters[96].gain: offset 2008 (float)
|
||||
dataset.tuning_parameters.eq_parameters[97].gain: offset 2028 (float)
|
||||
dataset.tuning_parameters.eq_parameters[98].gain: offset 2048 (float)
|
||||
dataset.tuning_parameters.eq_parameters[99].gain: offset 2068 (float)
|
||||
dataset.tuning_parameters.eq_parameters[100].gain: offset 2088 (float)
|
||||
dataset.tuning_parameters.eq_parameters[101].gain: offset 2108 (float)
|
||||
dataset.tuning_parameters.eq_parameters[102].gain: offset 2128 (float)
|
||||
dataset.tuning_parameters.eq_parameters[103].gain: offset 2148 (float)
|
||||
dataset.tuning_parameters.eq_parameters[104].gain: offset 2168 (float)
|
||||
dataset.tuning_parameters.eq_parameters[105].gain: offset 2188 (float)
|
||||
dataset.tuning_parameters.eq_parameters[106].gain: offset 2208 (float)
|
||||
dataset.tuning_parameters.eq_parameters[107].gain: offset 2228 (float)
|
||||
dataset.tuning_parameters.eq_parameters[108].gain: offset 2248 (float)
|
||||
dataset.tuning_parameters.eq_parameters[109].gain: offset 2268 (float)
|
||||
dataset.tuning_parameters.eq_parameters[110].gain: offset 2288 (float)
|
||||
dataset.tuning_parameters.eq_parameters[111].gain: offset 2308 (float)
|
||||
dataset.tuning_parameters.eq_parameters[112].gain: offset 2328 (float)
|
||||
dataset.tuning_parameters.eq_parameters[113].gain: offset 2348 (float)
|
||||
dataset.tuning_parameters.eq_parameters[114].gain: offset 2368 (float)
|
||||
dataset.tuning_parameters.eq_parameters[115].gain: offset 2388 (float)
|
||||
dataset.tuning_parameters.eq_parameters[116].gain: offset 2408 (float)
|
||||
dataset.tuning_parameters.eq_parameters[117].gain: offset 2428 (float)
|
||||
dataset.tuning_parameters.eq_parameters[118].gain: offset 2448 (float)
|
||||
dataset.tuning_parameters.eq_parameters[119].gain: offset 2468 (float)
|
||||
dataset.tuning_parameters.eq_parameters[0].slope: offset 92 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[1].slope: offset 112 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[2].slope: offset 132 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[3].slope: offset 152 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[4].slope: offset 172 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[5].slope: offset 192 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[6].slope: offset 212 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[7].slope: offset 232 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[8].slope: offset 252 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[9].slope: offset 272 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[10].slope: offset 292 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[11].slope: offset 312 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[12].slope: offset 332 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[13].slope: offset 352 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[14].slope: offset 372 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[15].slope: offset 392 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[16].slope: offset 412 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[17].slope: offset 432 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[18].slope: offset 452 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[19].slope: offset 472 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[20].slope: offset 492 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[21].slope: offset 512 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[22].slope: offset 532 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[23].slope: offset 552 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[24].slope: offset 572 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[25].slope: offset 592 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[26].slope: offset 612 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[27].slope: offset 632 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[28].slope: offset 652 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[29].slope: offset 672 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[30].slope: offset 692 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[31].slope: offset 712 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[32].slope: offset 732 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[33].slope: offset 752 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[34].slope: offset 772 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[35].slope: offset 792 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[36].slope: offset 812 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[37].slope: offset 832 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[38].slope: offset 852 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[39].slope: offset 872 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[40].slope: offset 892 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[41].slope: offset 912 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[42].slope: offset 932 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[43].slope: offset 952 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[44].slope: offset 972 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[45].slope: offset 992 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[46].slope: offset 1012 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[47].slope: offset 1032 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[48].slope: offset 1052 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[49].slope: offset 1072 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[50].slope: offset 1092 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[51].slope: offset 1112 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[52].slope: offset 1132 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[53].slope: offset 1152 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[54].slope: offset 1172 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[55].slope: offset 1192 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[56].slope: offset 1212 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[57].slope: offset 1232 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[58].slope: offset 1252 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[59].slope: offset 1272 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[60].slope: offset 1292 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[61].slope: offset 1312 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[62].slope: offset 1332 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[63].slope: offset 1352 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[64].slope: offset 1372 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[65].slope: offset 1392 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[66].slope: offset 1412 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[67].slope: offset 1432 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[68].slope: offset 1452 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[69].slope: offset 1472 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[70].slope: offset 1492 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[71].slope: offset 1512 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[72].slope: offset 1532 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[73].slope: offset 1552 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[74].slope: offset 1572 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[75].slope: offset 1592 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[76].slope: offset 1612 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[77].slope: offset 1632 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[78].slope: offset 1652 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[79].slope: offset 1672 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[80].slope: offset 1692 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[81].slope: offset 1712 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[82].slope: offset 1732 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[83].slope: offset 1752 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[84].slope: offset 1772 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[85].slope: offset 1792 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[86].slope: offset 1812 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[87].slope: offset 1832 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[88].slope: offset 1852 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[89].slope: offset 1872 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[90].slope: offset 1892 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[91].slope: offset 1912 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[92].slope: offset 1932 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[93].slope: offset 1952 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[94].slope: offset 1972 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[95].slope: offset 1992 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[96].slope: offset 2012 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[97].slope: offset 2032 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[98].slope: offset 2052 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[99].slope: offset 2072 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[100].slope: offset 2092 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[101].slope: offset 2112 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[102].slope: offset 2132 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[103].slope: offset 2152 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[104].slope: offset 2172 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[105].slope: offset 2192 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[106].slope: offset 2212 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[107].slope: offset 2232 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[108].slope: offset 2252 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[109].slope: offset 2272 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[110].slope: offset 2292 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[111].slope: offset 2312 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[112].slope: offset 2332 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[113].slope: offset 2352 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[114].slope: offset 2372 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[115].slope: offset 2392 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[116].slope: offset 2412 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[117].slope: offset 2432 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[118].slope: offset 2452 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[119].slope: offset 2472 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[0].filterType: offset 96 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[1].filterType: offset 116 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[2].filterType: offset 136 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[3].filterType: offset 156 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[4].filterType: offset 176 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[5].filterType: offset 196 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[6].filterType: offset 216 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[7].filterType: offset 236 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[8].filterType: offset 256 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[9].filterType: offset 276 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[10].filterType: offset 296 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[11].filterType: offset 316 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[12].filterType: offset 336 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[13].filterType: offset 356 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[14].filterType: offset 376 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[15].filterType: offset 396 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[16].filterType: offset 416 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[17].filterType: offset 436 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[18].filterType: offset 456 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[19].filterType: offset 476 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[20].filterType: offset 496 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[21].filterType: offset 516 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[22].filterType: offset 536 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[23].filterType: offset 556 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[24].filterType: offset 576 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[25].filterType: offset 596 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[26].filterType: offset 616 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[27].filterType: offset 636 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[28].filterType: offset 656 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[29].filterType: offset 676 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[30].filterType: offset 696 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[31].filterType: offset 716 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[32].filterType: offset 736 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[33].filterType: offset 756 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[34].filterType: offset 776 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[35].filterType: offset 796 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[36].filterType: offset 816 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[37].filterType: offset 836 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[38].filterType: offset 856 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[39].filterType: offset 876 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[40].filterType: offset 896 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[41].filterType: offset 916 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[42].filterType: offset 936 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[43].filterType: offset 956 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[44].filterType: offset 976 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[45].filterType: offset 996 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[46].filterType: offset 1016 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[47].filterType: offset 1036 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[48].filterType: offset 1056 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[49].filterType: offset 1076 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[50].filterType: offset 1096 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[51].filterType: offset 1116 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[52].filterType: offset 1136 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[53].filterType: offset 1156 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[54].filterType: offset 1176 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[55].filterType: offset 1196 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[56].filterType: offset 1216 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[57].filterType: offset 1236 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[58].filterType: offset 1256 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[59].filterType: offset 1276 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[60].filterType: offset 1296 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[61].filterType: offset 1316 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[62].filterType: offset 1336 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[63].filterType: offset 1356 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[64].filterType: offset 1376 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[65].filterType: offset 1396 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[66].filterType: offset 1416 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[67].filterType: offset 1436 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[68].filterType: offset 1456 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[69].filterType: offset 1476 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[70].filterType: offset 1496 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[71].filterType: offset 1516 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[72].filterType: offset 1536 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[73].filterType: offset 1556 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[74].filterType: offset 1576 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[75].filterType: offset 1596 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[76].filterType: offset 1616 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[77].filterType: offset 1636 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[78].filterType: offset 1656 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[79].filterType: offset 1676 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[80].filterType: offset 1696 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[81].filterType: offset 1716 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[82].filterType: offset 1736 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[83].filterType: offset 1756 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[84].filterType: offset 1776 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[85].filterType: offset 1796 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[86].filterType: offset 1816 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[87].filterType: offset 1836 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[88].filterType: offset 1856 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[89].filterType: offset 1876 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[90].filterType: offset 1896 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[91].filterType: offset 1916 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[92].filterType: offset 1936 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[93].filterType: offset 1956 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[94].filterType: offset 1976 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[95].filterType: offset 1996 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[96].filterType: offset 2016 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[97].filterType: offset 2036 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[98].filterType: offset 2056 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[99].filterType: offset 2076 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[100].filterType: offset 2096 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[101].filterType: offset 2116 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[102].filterType: offset 2136 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[103].filterType: offset 2156 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[104].filterType: offset 2176 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[105].filterType: offset 2196 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[106].filterType: offset 2216 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[107].filterType: offset 2236 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[108].filterType: offset 2256 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[109].filterType: offset 2276 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[110].filterType: offset 2296 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[111].filterType: offset 2316 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[112].filterType: offset 2336 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[113].filterType: offset 2356 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[114].filterType: offset 2376 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[115].filterType: offset 2396 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[116].filterType: offset 2416 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[117].filterType: offset 2436 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[118].filterType: offset 2456 (int32_t)
|
||||
dataset.tuning_parameters.eq_parameters[119].filterType: offset 2476 (int32_t)
|
||||
dataset.tuning_parameters.delay_parameters[0].ch_n: offset 2500 (int32_t)
|
||||
dataset.tuning_parameters.delay_parameters[1].ch_n: offset 2508 (int32_t)
|
||||
dataset.tuning_parameters.delay_parameters[2].ch_n: offset 2516 (int32_t)
|
||||
dataset.tuning_parameters.delay_parameters[3].ch_n: offset 2524 (int32_t)
|
||||
dataset.tuning_parameters.delay_parameters[4].ch_n: offset 2532 (int32_t)
|
||||
dataset.tuning_parameters.delay_parameters[5].ch_n: offset 2540 (int32_t)
|
||||
dataset.tuning_parameters.delay_parameters[0].delay_data: offset 2504 (float)
|
||||
dataset.tuning_parameters.delay_parameters[1].delay_data: offset 2512 (float)
|
||||
dataset.tuning_parameters.delay_parameters[2].delay_data: offset 2520 (float)
|
||||
dataset.tuning_parameters.delay_parameters[3].delay_data: offset 2528 (float)
|
||||
dataset.tuning_parameters.delay_parameters[4].delay_data: offset 2536 (float)
|
||||
dataset.tuning_parameters.delay_parameters[5].delay_data: offset 2544 (float)
|
||||
dataset.tuning_parameters.volume_parameters[0].ch_n: offset 2548 (int32_t)
|
||||
dataset.tuning_parameters.volume_parameters[1].ch_n: offset 2556 (int32_t)
|
||||
dataset.tuning_parameters.volume_parameters[2].ch_n: offset 2564 (int32_t)
|
||||
dataset.tuning_parameters.volume_parameters[3].ch_n: offset 2572 (int32_t)
|
||||
dataset.tuning_parameters.volume_parameters[4].ch_n: offset 2580 (int32_t)
|
||||
dataset.tuning_parameters.volume_parameters[5].ch_n: offset 2588 (int32_t)
|
||||
dataset.tuning_parameters.volume_parameters[0].vol_data: offset 2552 (float)
|
||||
dataset.tuning_parameters.volume_parameters[1].vol_data: offset 2560 (float)
|
||||
dataset.tuning_parameters.volume_parameters[2].vol_data: offset 2568 (float)
|
||||
dataset.tuning_parameters.volume_parameters[3].vol_data: offset 2576 (float)
|
||||
dataset.tuning_parameters.volume_parameters[4].vol_data: offset 2584 (float)
|
||||
dataset.tuning_parameters.volume_parameters[5].vol_data: offset 2592 (float)
|
||||
@ -1 +1 @@
|
||||
Subproject commit 032f99bc1eea81ba0f2c6608114940f31510a3fc
|
||||
Subproject commit 5d3fc10c5ddbadfb5b8cd4825355fbabc9a42438
|
||||
BIN
音效控件UI/plugins/FilterButton.exe
Normal file
BIN
音效控件UI/plugins/FilterButton.exe
Normal file
Binary file not shown.
Loading…
Reference in New Issue
Block a user